CONCURRENCY AND SECURITY VERIFICATION

IN HETEROGENEOUS PARALLEL SYSTEMS

CAROLINE JUNE TRIPPEL

A DISSERTATION
PRESENTED TO THE FACULTY
OF PRINCETON UNIVERSITY
IN CANDIDACY FOR THE DEGREE

OF DOCTOR OF PHILOSOPHY

RECOMMENDED FOR ACCEPTANCE
BY THE DEPARTMENT OF
COMPUTER SCIENCE

ADVISER: PROFESSOR MARGARET MARTONOSI

NOVEMBER 2019

©) Copyright by Caroline June Trippel, 2019.

All rights reserved.

Abstract

To achieve performance scaling at manageable power and thermal levels, modern
systems architects employ parallelism along with high degrees of hardware special-
ization and heterogeneity. Unfortunately, the power and performance improvements
afforded by heterogeneous parallelism come at the cost of significantly increased design
complexity, with different components being programmed differently and accessing
shared resources differently. This design complexity in turn presents challenges for
architects who need to devise mechanisms for orchestrating, enforcing, and verifying
the correctness and security of executing applications.

As it turns out, software-level correctness and security problems can result from
problematic hardware event orderings and interleavings that take place when an
application executes on a particular hardware implementation. Since hardware designs
are complex, and since a single user-facing instruction can exhibit a variety of different
hardware execution event sequences, analyzing and verifying systems for correct
and secure orderings and interleavings of these events is challenging. To address
this issue, this dissertation combines hardware systems architecture approaches with
formal methods techniques to support the specification, analysis, and verification of
implementation-aware event ordering scenarios. The specific goal here is enabling
automatic synthesis of implementation-aware programs capable of violating correctness
or security guarantees when such programs exist.

First, this dissertation presents TriCheck, an approach and tool for conducting
full-stack memory consistency model verification (from high-level programming lan-
guages down through hardware implementations). Using rigorous and efficient formal
approaches, TriCheck identified flaws in the 2016 RISC-V memory model specification
and two counterexamples to a previously proven-correct compiler mapping scheme

from C11 onto Power and ARMvT7.

il

Second, after making the important observation that memory consistency model
and security analyses are amenable to similar approaches, this thesis presents Check-
Mate, an approach and tool for conducting hardware security verification. CheckMate
uses formal techniques to evaluate susceptibility of a hardware system design to
formally-specified security exploit classes. When a design is susceptible, proof-of-
concept exploit codes are synthesized. CheckMate automatically synthesized programs
representative of Meltdown and Spectre and new exploits, MeltdownPrime and Spec-
trePrime.

Third, this dissertation presents approaches for handling memory model hetero-
geneity in hardware systems, focusing on correctness and highlighting applicability of

the proposed techniques to security.

v

Acknowledgements

It is hard to believe that my time as a Princeton graduate student is coming to an
end. I would like to take some time to acknowledge the many people who have made
both this moment possible and this period of my life so transformative.

I would first like to thank my advisor, Margaret Martonosi, for all of her support
and guidance over the years and for encouraging me to pursue a PhD in the first
place. I often tell the story of how I was unsure as to whether to pursue a PhD or a
Masters degree when I was applying to graduate school, resulting in me applying to
both PhD and Master programs. At Princeton, I applied to the Masters program and
was eventually contacted by Margaret who asked if I would be interested in converting
my Masters application into a PhD application. I said “yes,” and my life has been
changed for the better as a result. I could not have asked for a better advisor than
Margaret. She leads by example and is always striving to make our greater research
community better. Whenever I have needed advice, be it technical, professional, or
personal, Margaret has been readily available and willing to provide it. 1 want to
thank Margaret for accepting nothing less than my best. I am truly grateful to have
her as a mentor.

I would like to thank the remainder of my thesis committee: Andrew Appel, Aarti
Gupta, Daniel Lustig, and David Wentzlaff. I would especially like to thank Aarti
and Dan for their valuable feedback on my dissertation. Lastly, thank you to Dan for
being such a great mentor, collaborator, and friend throughout my PhD.

I would like to acknowledge my high school, undergraduate, and industry mentors
who sparked and sustained my interests in scientific research and academia. First,
I would like to thank Bill Boggess from the University of Notre Dame who first
introduced me to and advised me on academic research when I was in high school.
Next, I would like to thank David Meyer from Purdue University for encouraging me

to serve as an undergraduate teaching assistant for two of his ECE courses. Lastly,

v

I would like to thank Michael Pellauer for his guidance and mentorship during my
two internships at NVIDIA and during our continued collaborations outside of my
internships.

Next, I would like to acknowledge all of the MRM Group members that I overlapped
with during my time at Princeton: Ozlem, Yavuz, Wenhao, Dan, Ali, Tae Jun, Themis,
Prakash, Aninda, Naorin, Teague, Wei, Yipeng, Luwa, Tyler, and my “research sibling,”
Yatin. Thank you all for being such great colleagues, collaborators, and friends. I
hope that our paths continue to cross in the future. Additionally, I want to thank the
members of Sharad Malik’s and Aarti Gupta’s research groups for meaningful research
interactions and technical collaborations.

Saving the best for last, I would now like to thank my family for making this
moment possible. Thank you to my parents, Chris and Terry, for instilling in me from
an early age the idea that I could be anything I wanted to be when I grew up. Thank
you for your value of education and for encouraging me to pursue my interests in
math and science. Thank you for sending me to Montessori school and for having me
take piano lessons. These experiences taught me to be curious, to try new things, and
to not give up. Thank you for instilling in me a love of food and family. Calling my
family and cooking a meal with friends has guided me through the ups and downs of
graduate school.

Thank you to the best brothers I could ever ask for, Tim and Christopher. Thank
you for your encouragement and of course your friendly competition that always drives
me to put my best foot forward. Thank you also for your senses of humor and for
always being able to uplift my mood.

Thank you to my Aunt Paula (AP) and Uncle Bob (UB) for being my second
parents. Thank you for letting me live with you during my Boston-area internships
and for giving me a second home on the East Coast. Thank you for all of your support

and for always being there for me.

vi

Thank you to my grandparents, June and Ed Garrow and Angie and Jim Trippel.
Thank you for your support throughout my life and for helping to raise me to be the
person I am today. I am sure that my Grandma, Grandpa, and Papa Jim would be
proud of what I have accomplished.

Finally, I would like to acknowledge my husband, Greg. Thank you for being my
best friend and for always being an example of hard work and perseverance. You
motivate me every day to be the best version of myself. Thank you for laughing with
me, cooking with me, going to the gym with me, and even brainstorming research
ideas with me. I am so lucky to be living life with you and am excited for our next
adventures together.

Thank you to Greg and to my entire family for your love and support and for

always believing in me. I could not have done this without you.

vil

To my husband, Gregory.
To my parents, Christine and Terrence.

And to my brothers, Timothy and Christopher.

viii

Contents

Abstract iii
Acknowledgements v
1 Introduction 1
1.1 Motivation 1

1.2

1.3

1.4
1.5

1.1.1 Technology Trends Driving Decades of Single-Core Performance

Scaling 1
1.1.2 The Shift to Multicore and the Enhanced Need for Consistency 3
1.1.3 When a Feature is Really a Security Vulnerability 7
1.1.4 Consequences of Modern Design Trends for Reliability and Security 9
Motivating Example: Event Ordering Issues in the Hardware-Software
Stack . ..o 10
1.2.1 Event Ordering Issues in Software 10
1.2.2 Event Ordering Issues in Hardware 13
Research Challenges and Goals 15
1.3.1 Correctness Implications of Hardware Event Orderings 17
1.3.2 Security Implications of Hardware Event Orderings 20
1.3.3 Adding a Dimension of Heterogeneity 22
Dissertation Contributions 24
Dissertation Outline 26

X

2 Background and Related Work 28

3.3

3.4

2.1 Overview of Memory Consistency Models 28
2.1.1 Sequential Consistency, 30
2.1.2 Weak Memory Models 31
2.1.3 Translating Between Memory Model Layers 37

2.2 Memory Consistency Model Specification and Analysis 39
2.2.1 Litmus Tests 39
2.2.2 Techniques for Formally Specifying Memory Consistency Models 42
2.2.3 Microarchitectural Happens-Before Analysis 44

2.3 Identifying Similarities Between Memory Consistency Model and Hard-
ware Security Bugs 48

2.4 Overview of Microarchitectural Side-Channel Attacks 49
2.4.1 Cache Timing Side-Channel Attacks 50
2.4.2 Speculative Execution Attacks L. 52

2.5 Chapter Summary 55

3 Filling Memory Consistency Model Analysis Gaps with a Holistic

Full-Stack Approach 56

3.1 Imtroduction o7
3.1.1 Motivating Exampleo 29

3.2 The TriCheck Approach: Full-Stack Memory Consistency Model Verifi-

cation oL 62
The 2016 RISC-V Memory Model 67
3.3.1 Baseline Memory Model 67
3.3.2 Atomics Extension o000 69
3.3.3 Microarchitectural Implementations 71

Case Study: Using TriCheck to Evaluate the RISC-V Memory Models 73

3.4.1 Baseline Analysis and Refinement 74

X

3.5

3.6

3.7

3.8
3.9

3.4.2 Baseline + Atomics Extension Analysis and Refinement 77

3.4.3 Refined RISC-V Compiler Mappings 83
RISC-V Memory Consistency Model Shortcomings Quantified 83
3.5.1 Litmus Test Suite Evaluation 84

Broader Applicability of TriCheck: Uncovering Flaws in the C11 Mem-

ory Model 88
Impact of Identifying Flaws in 2016 RISC-V 89
Related Work oo 90
Chapter Summary 91

Formal and Automated Evaluation of Microarchitectural Suscepti-

bility to Exploit Classes 95
4.1 Introduction 96
4.2 CheckMate Approach: Microarchitectural Happens-Before Analysis for

4.3

4.4

4.5

Security 99
4.2.1 CheckMate Inputs 100
4.2.2 CheckMate Outputs 102

Relational Model Finding for Implementation-Aware Program Synthesis105

4.3.1 Why Relational Model Finding? 106

4.3.2 Initial (Unoptimized) Formulation of Microarchitecture Specifi-
cation Primitives in Alloy 107

CheckMate Tool: Keeping Implementation-Aware Program Synthesis

Tractable o 109
4.4.1 Avoiding Re-Analysis of Isomorphic Graph Nodes 110
4.4.2 Avoiding Re-Analysis of [somorphic Graph Edges 111
4.4.3 Constraining Solutions 111
Case Study: Synthesizing Real Attacks 112
4.5.1 Specifying Attack Patterns 113

x1

4.5.2 Experimental Setup

4.6 Results.
4.6.1 Automatic Synthesis of Meltdown and Spectre
4.6.2 Automatic Synthesis of New Exploits: MeltdownPrime and
SpectrePrime oo

4.6.3 From SpectrePrime Security Litmus Test to Real Exploit . . .
4.6.4 Mitigations

4.7 Related Worko

4.8 Chapter Summary L

Looking Ahead Towards Fully Heterogeneous Analysis
5.1 Introduction
5.2 Motivating Example
5.3 Memory Ordering Specification Tables
5.3.1 Store Atomicityo
5.3.2 Same-Address Orderings
5.3.3 Fence Cumulativity L.
5.3.4 Summary
5.4 Comparing and Manipulating MOSTs
54.1 MOST Partition Refinement
5.4.2 MOST Comparison Operators
5.4.3 MOSTs Comparison Examples
5.5 ArMOR Case Study: Dynamic Inter-Memory Model Translation . . .
5.5.1 Motivating Example
5.5.2 Basic Operation
5.6 Evaluation Methodology: Pintool-based Exploration
5.7 Performance Results: DBT-Based Exploration

5.8 Takeaways

122
123
124
126

5.9 Applications to Security 156

5.10 Related Work 156
5.11 Chapter Summary 158
6 Thesis Scope, Future Work and Conclusions 159
6.1 Thesis Assumptions and Scope 159
6.2 Future Directions 162

6.2.1 Defining Security Model Specifications Throughout the

Hardware-Software Stack 162
6.2.2 Hardware Security Verification 164
6.2.3 Broader Implications of Memory and Event Ordering 164

6.2.4 Systems Design that Optimizes for Correctness and Security . 166

6.3 Dissertation Conclusions 167
A SpectrePrime Proof-of-Concept 174
Bibliography 181

xiil

Chapter 1

Introduction

1.1 Motivation

1.1.1 Technology Trends Driving Decades of Single-Core Per-

formance Scaling

A period of rapid innovation lasting roughly 20 years transformed the modern computer
from a theoretical concept [Tur37] into a transistor-based reality [Com15]. With
the promise of integrated circuits [Jach9] to solve the challenge of realizing complex
computer designs composed of “hundreds, thousands, and sometimes tens of thousands
of electron devices” [MP58], two notable design trends emerged and sustained 50
years of exponential computing advances. The first, Moore’s Law, was the 1965
prediction by Intel co-founder Gordon Moore that transistor densities on integrated
circuits would double about every two years [Moo65]. The second, Dennard scaling,
was the 1974 observation by Dennard et al. that transistor power densities would
remain constant as transistors scaled down in size [DGnY*74]. With Moore’s Law
and Dennard scaling working together, transistors were scaled down in size in each
technology generation, and CPU clock frequency was increased at the same power

consumption to obtain faster circuits. Furthermore, hardware architects leveraged
1

doubling transistor densities to create complex hardware organizations with features
that further enhanced performance [HP11], while having to pay minimal attention to
the energy efficiency of their design choices.

While power and performance scaling weathered multiple technology challenges
throughout the history of Moore’s Law and Dennard scaling, the last 10-15 years
have posed challenges that have been more difficult to solve, with fewer existing
technologies ready to substitute in. In particular, one challenge encountered in the
early 2000s was a computing power wall where further compute improvements became
power-limited [BC11, KM08, SMK14]. The primary contributor to this computing
power wall was the breakdown of Dennard scaling around 2005. This inflection point
in the history of computer architecture marked the end of almost half of a century of
exponential growth in single-core processor performance and the beginning of a new
era of power-aware computer systems design.

As power consumption transitioned into a primary constraint for computer systems
development, new design and analysis trends emerged. First, with industry continuing
to provide increasing transistor densities, architects turned from single-core designs
to multicore designs to make use of these extra transistors with a constrained power
budget [ABCT06, HMO08]. Multicore architectures still persist today and are dominant
in many important sectors of the computing industry, ranging from mobile devices to
desktop computers and supercomputers. Second, power joined performance as a core
early-stage computer architecture design metric, prompting the development of the first
architecture-level techniques for power simulation and evaluation [BTM00, CMP*04].

Just as power challenges in the early 2000s spearheaded the development of
novel architectural power-aware design (e.g., multicore processors) and analysis (e.g.,
architecture-level power simulators) techniques, the complexity of modern hardware
systems is motivating the development of reliability-aware design and analysis tech-

niques. More specifically, we have reached a new inflection point in the field of

computer architecture where the degree of complexity in modern hardware systems
design requires mechanisms for evaluating architecture-level correctness and security.

This thesis addresses this requirement and the corresponding gaps in existing solutions.

1.1.2 The Shift to Multicore and the Enhanced Need for Con-

sistency

The paradigm shift to multicore processors prompted the development of techniques
to exploit parallelism. In particular, there was a renewed interested in shared memory
parallelism, which had been previously deployed in the multiprocessor context. While
software parallelism models often vary in how they facilitate communication between
concurrent program threads, at the hardware level, multiprocessor and multicore
communication is most generally achieved by giving programs the real or virtual
ability to issue concurrent reads and writes to the same global memory space, called
shared memory.

Renewed interest in shared memory parallelism revived efforts to define and
orchestrate the correct execution of parallel programs. Specifically, researchers observed
that shared memory parallelism, when combined with common single-core performance
optimizations that reorder and buffer instructions, necessitates rules to govern the
legal ordering and visibility of concurrent shared memory accesses. Furthermore,
prior work on shared memory multiprocessors in the late 1970s demonstrated that
existing instruction set architectures (ISAs)', which defined an instruction interface for
software to target and for hardware designs to implement, were insufficient for encoding
such a set of rules [Lam79]. Thus, ISAs were augmented with a memory consistency

model (also referred to as a “memory model” or a “consistency model”) [IBMS83].

'The notion of an ISA was proposed by IBM in 1964 to allow hardware vendors to write one set
of software and have it run well (and correctly) on a variety of hardware implementations at different
price points for different customers [ABB64].

2019¢ NVIDIA PTX memory model [NVI17]
2018 ¢ RISC-V Weak Memory Order (RVWMO) is ratified [WA19]

2018 —:

A. Manerkar et al. extend the phb analysis paradigm to handle cache coherence protocols [MLPM15]
. Lustig et al.’s precise memory model specification format and translation framework [LTPM15]

. Petri et al. specify Java’s memory model operationally [PVJ15]

ARMv8 adds explicit support for release consistency [ARM13b]

2014 ¢ D. Lustig et al.’s seminal work on phb analysis [LPM14]

J. Alglave’s Herding Cats [AMT14]

RISC-V Atomics Extension memory model [WLPA14]

2
=
é RISC-V Total Store Order (RVTSO) extension is ratified [WA19]
n C. Trippel et al. adapt memory model analysis techniques to the security space [TLM18c, TLM18a, TLM19]
g H. Zhang et al.’s axiomatic memory models for operational SoC modules [ZTM+18]
.g 2017¢ Y. A. Manerkar et al. link puspec models to Verilog RTL [MLMP17]
jg C. Trippel et al.’s full-stack memory model verification approach [TML+17, MTLt 16]
5 D. Lustig et al.’s Streamlined Causal Consistency (SCC) [LWPG17]
® E 2016 D. Lustig et al.’s uspec DSL for specifying a hardware system axiomatically [LSMB16]
SE ARM ISA-Formal framework [RCD116]
NE M. Batty et al. specify C11 and OpenCL SC atomics axiomatically [BDW16]
JFE K. Nienhuis et al. specify C11 operationally [NMS16]
30 2015¢ D. Lustig’s thesis [Lusl5]
83 Y.
5‘? G
8
>

2013
2012 J. Alglave’s hierarchy of weak memory models [Algl2]

0
g Mador-Haim et al. specify Power axiomatically [MHMS*IQ]
0.845 2011 ¢ Standardization of C/C++ memory model [ISO1l1la,ISO11b]
n U:U M. Batty et al. specify C/C++ [BOST11]
3 j 'g Sarkar et al. specify Power operationally [SSA*II]
QT & ARM errata for load—load hazard [ARM11]
I8 @ RISC-V Baseline memory model [WLPA11]
g :E 2010 J. Alglave’s thesis [Alg10]
g S S 2009¢ Owens et al. specify x86-TSO operationally [OSS09]
27" 2008 H. Boehm and S. Adve define a memory model for C++ [BAOS]
g ARMv7 memory model [ARMO08]
-
o 2007
B

2006 ¢ Arvind and J.-W. Maessen’s Instruction Reordering + Store Atomicity [AMO06]
2005 J. Manson et al. specify a memory model for Java [MPAO5]

Intel’s first multicore silicon production begins [Int05]

2004 ¢ AMD demonstrates first x86 multicore processor [AMDO04]

S. Hangal et al.’s TSOTool [HVMLO04]

2003
2002
2001¢ IBM introduces finer-grained synchronization in POWER4 ISA (1sync/lwsync) [TDF101]
2000
1999 ¢ Commit-Reconcile memory model [SAR99]
1998
1997
1996 ¢ S. Adve and K. Gharachorloo’s memory model tutorial [AG95]

1995 ¢ K. Gharachorloo’s thesis [Gha95]

1994¢ SPARC Relaxed Memory Order (RMO) memory model [SPA94]

1993 ¢ IBM PowerPC memory model [MSSW94, CSB93]

S. Adve’s thesis [Adv93]

1992 ¢ Alpha memory model [Cor92]

W. Collier’s store atomicity framework [Col92]

1991 ¢ SPARC Total Store Order (TSO) and Partial Store Order (PSO) memory models [SPA91]
1990¢ Gharachorloo et al.’s Release Consistency (RC) [GLLT90]

S. Adve and M. Hill’s Weak Ordering [AH90]

1989 ¢ J. Goodman’s Processor Consistency [Goo89]

1988
1987
1986 ¢ Dubois et al. propose weak memory models [DSB86]
1985
1984
1983 ¢ IBM System/370 memory model [IBM83]
1982
1981
1980
1979¢ L. Lamport’s SC for multiprocessors [Lam79]

1979 — 2004
MCMs for Multiprocessors

Figure 1.1: Timeline of selected related work from the memory consistency model
(MCM) literature that is discussed in Section 1.1.2.

The remainder of this section gives an overview of the evolution of memory models,

referencing events from the timeline in Table 1.1.

1979 — 2004: Memory Models for Multiprocessors

In 1979, Leslie Lamport proposed the first memory consistency model, sequential consis-
tency (SC), for multiprocessors [Lam79]. Sequential consistency describes programmer-
intuitive ordering rules for shared memory instructions in a parallel program. Specifi-
cally, a parallel program execution is sequentially consistent if it appears to execute
as a strict interleaving of constituent program threads where per-thread instructions
execute in program order (i.e., the order they appear in the program). Later, Dubois
et al. proposed the idea of a weak memory model as one that is “weaker” than SC (i.e.,
one that relaxes requirements of SC) [DSB86]. As it turns out, many seemingly-simple
and desirable hardware optimizations that emerged in the evolution of single-core
processor designs (e.g., store buffers, out-of-order execution, speculation) contradict
SC requirements, leading to weak memory models dominating in modern industrial
processor design [AMD17,Int10,Int19,IBM13, ARMO08, NVI17, ARM13b, WA19].
Throughout the 1990s, researchers in both academia and industry explored and
developed a variety of different ISA memory models with different apparent perfor-
mance and programmability trade-offs. In general, their proposed memory models
differed with respect to requirements on instruction execution order (i.e., preserved
program order in Section 2.1.2) and visibility of processor state updates (i.e., store
atomicity in Section 2.1.2) [AMO06,AG95]. Notably, the consistency models from this
period that most heavily influenced today’s commercial hardware and programming
languages sought to provide intuitive SC ordering semantics for programs without

overly-constraining compiler or hardware optimizations [AH90, GLL*90].

2004 — 2014: Memory Models for High-Level Languages and Formal Mem-

ory Model Specifications

Historically, the hardware-software stack has been divided into layers with specifications
provided to interface between layers. Following this trend, as multicore processors
hit the market, researchers began to develop memory models for high-level languages
(HLLSs) to better exploit shared memory parallelism throughout the computing stack.
The wide array of ISA memory models with varying ordering requirements that evolved
previously inspired notably complex high-level language (HLL) memory models, such as
those that have been defined for Java, C11%, and OpenCL. Specifically, the complexity
of these HLL models stemmed from the objective of enabling them to target virtually
all of the available (and desirable) ISA memory model options.

Early memory models (and even many industry models that exist today) were
defined using natural language descriptions and even code examples to demonstrate
the effects of a given memory model on the execution of a parallel program. However,
given that they are crucial for ensuring parallel program correctness, there has been a
progression [AM06,SAR99] in formalizing consistency model definitions (Section 2.2.2).
Formally specifying memory models enables their rigorous and mathematical analysis
and consequently precise reasoning about their effects on parallel program behavior.

Thus, various HLL? and ISA* memory models have been formalized and analyzed.

2In this thesis, C11 refers to the 2011 standard of the C/C++ language [ISO11a,ISO11b] that
includes a formally specified memory consistency model [BAOS].

3The following HLL memory models have all been formalized: Java, C11, and OpenCL [MPAO05,
BA08,PVJ15,BOST11,BDW16, NMS16].

4The following ISA memory models have all been formalized: x86-TSO, Power, ARMv7, ARMvS,
RISC-V WMO and TSO, and NVIDIA PTX [SHW11,0SS09, AMT14, PED*17, NVI17, WA19].
RISC-V’s two memory model options, WMO and TSO [WA19], were formally specified following
work presented in Chapter 3 of this thesis that identified deficiencies in the 2016 RISC-V memory
model specification [WLPA16].

2014 — 2018: Verifying Memory Model Implementations

Having distinct memory models for different layers of the hardware-software stack
enables hardware, software, and compiler experts to collectively contribute their
expertise to designing efficient and correct parallel computer systems. However, it
necessitates translation between stack layers. As one example, compilers must map
HLL memory model primitives onto one or more ISA instructions that uphold the
requirements of the HLL model. Following from work on formal memory model
specifications, researchers have produced verified compiler mapping® schemes from C11
and Java to a variety of target ISAs®. Various techniques have also been developed
proving the correctness of operations performed within a C11 compiler [VBC*15,VN13].
As another example, a recent line of research by my colleagues at Princeton has
proposed techniques for verifying that a microarchitecture correctly implements its
ISA memory consistency model specification [LPM14, Lus15, MLPM15, LSMB16,
MLMP17, MLMG18].

1.1.3 When a Feature is Really a Security Vulnerability

In addition to ensuring correctness for parallel programs, guaranteeing program
security is a second challenge that emerges from the combination of single-core
performance optimizations with shared resources. In particular, potential hardware
security vulnerabilities arise when distinct processes can share hardware resources.
Processes might share resources in a coarse-grained manner, through time-multiplexing

execution or storing data on the same processor core, or in a fine-grained manner,

5This thesis uses the term “compiler mapping” to refer to a compiler’s or runtime’s translation
of a HLL memory model primitive (e.g., a type of read or write operation) to one or more ISA
instructions that sufficiently implement the HLL primitive’s functionality and ordering requirements.

6Verified compiler mappings have been produced from C11 and Java memory model primitives to
the x86, ARMv7, ARMv8, and Power ISAs [BOST11,BMO*12,SMO"12,LVK"17,Sew16, PVJ15,
vAO08]. Recent work has also formally verified compiler mappings from an OpenCL-like (i.e., a
“repaired” version of OpenCL in light of recent work on repairing C11 [LVK'17]) scoped C+-+
memory model onto PTX [LSG19].

via multithreading techniques [Tho64, Smi86, ALKK90, HKN"92]. When paired with
particular hardware optimizations, this inter-process resource sharing can enable
security violations for the executing processes. For example, hardware optimizations
intended to improve “common case” performance [Amd67], have resulted in modern
hardware designs that feature fast and slow paths for various instruction types
(e.g., cache hits/misses and variable-latency arithmetic). This common optimization
of variable-latency instructions can lead to covert- or side-channels and ultimately
information leakage between processes [Szel9).

From their original inception to the present, ISAs have been defined and imple-
mented under the assumption that the only processor state “visible” to an executing
program is that which is accessible via user-facing ISA instructions. However, a
vast amount of prior work (referenced in Section 4.7) has demonstrated that the
combination of common microarchitectural performance optimizations (e.g., those
resulting in variable-latency instructions) with resource sharing between processes
has widened the scope of “architecturally visible state” to additionally include state
that can be detected (e.g., by an attacker process observing variability in its own
or a victim process’s execution on a microarchitecture). To give some examples, in
2006, PRIME+PROBE [OSTO06] cache side-channel attacks were proposed as a way to
leak secret AES encryption keys from a victim to an attacker process. Later in 2014,
higher-resolution FLUSH4+RELOAD [YF14] cache side-channel attacks were designed to
more precisely leak arbitrary data accessed by a victim to an attacker, with the caveat
that the leaked information must reside in read-only memory shared between the
attacker and victim (e.g., via page deduplication). Starting with the announcement of
Meltdown [LSG*18] and Spectre [KGGT18] in early 2018, researchers have began lever-
aging a wider array of microarchitectural features (e.g., features involved in hardware
speculation) to achieve arbitrary information leakage from a victim’s address space to

an attacker process, with no exceptions on what that memory’s access permissions

might be [LSG*+18,KGG*18,Int18,Horl8,SP18, KW18, BMW*18, WVBM*18,SSLG18,
MR18, KKSA18, CBS*18,vSMO*19, MML*19, SLM*19, KGG19,IMB*+19).

1.1.4 Consequences of Modern Design Trends for Reliability

and Security

About 15 years after the end of Dennard scaling, Moore’s law is steadily grinding
to a halt”. As a result, architects have been increasingly turning towards hardware
specialization and architectural heterogeneity to meet the power and performance
requirements posed by today’s important applications [CRDI07,Grell,PCC*14,Shil9,
topl4]. Onme early example of this heterogeneity is the GPGPU paradigm, where
a graphics processing unit (GPU) and CPU collectively execute general purpose
(GP) applications (e.g., with the GPU focusing on parts of applications that can be
parallelized and the CPU handling sequential components). As an example of more
extreme heterogeneity, modern systems-on-chip (SoCs) integrate dozens of specialized
hardware components. Using Apple’s A series as a specific example, the A12 mobile
SoC design (released in 2018) features over 40 accelerators [HR19].

Architectural heterogeneity is an important modern design trend that has implica-
tions for memory consistency and security reasoning, with different components being
programmed differently and accessing shared memory differently. First, architectural
heterogeneity not only implies instruction set diversity but also memory consistency
model diversity. While memory consistency models have been studied for decades,
emphasis has been placed on memory models in the context of homogeneous systems.
Second, security reasoning becomes more even more complex when more components

with more unique features are involved [KYP*14,ZTM"18].

"For example, Intel delayed its 10nm process multiple times [Engl8]

Thread 0 Thread 1
Q d.sanitize() if (sanitized)
a sanitized = true d.use()

Figure 1.2: Common compiler, runtime, and/or hardware optimizations can enable a
use of d by Thread 1 before d has been “sanitized” by Thread 0 [MMM™*15].

1.2 Motivating Example: Event Ordering Issues
in the Hardware-Software Stack

This section presents a running example to build intuition for the sorts of counter-
intuitive program behaviors that can arise in parallel programs as a result of event
ordering issues caused by weak memory models (i.e., memory models that relax
SC) in the hardware-software stack. Additionally, this section motivates precisely
defined memory consistency models as a way to specify and reason about correctness
implications of such behaviors. The section concludes by discussing how current
memory model analysis techniques fall short in truly enabling us to ensure that a
programmer’s intent is maintained from their HLL program formulations down to the
executions of their programs on hardware implementations. Furthermore, it motivates

a need for analogous security analysis techniques.

1.2.1 Event Ordering Issues in Software

Consider the parallel program in the code listing in Figure 1.2 [MMM™15]. Thread 0
is calling a sanitize method on some object d. After calling the sanitize method,
Thread 0 sets sanitized equal to true. Upon seeing that sanitized is true, Thread
1 proceeds to use d. While this code listing might seem reasonable at first glance, its
post-compilation execution on a target hardware implementation can actually result
in Thread 1 accessing an “unsanitized” version of d. In other words, the following

sequence of operations is possible: QQ@@ Aside from contradicting programmer-

intended behavior, this program could lead to an unauthorized memory access by

10

atomic/volatile sanitized;
Thread 0 Thread 1

@ d.sanitize() @ if (sanitized)
@ sanitized = true @ d.use()

Figure 1.3: To prevent an “unsanitized” use of d in the code listing in Figure 1.2, the
programmer can declare sanitized as an atomic/volatile (C11/Java) variable.

Thread 1 and consequently a security violation. This counter-intuitive behavior is
possible as a result of common compiler, runtime, and/or hardware optimizations that
may elect to reorder the instructions on each of the threads in Figure 1.2 in an effort
to improve overall performance of the program’s execution. From the perspective of
compilers, runtimes, and hardware implementations, these thread-local reorderings
are perfectly acceptable since the instructions involved in the reorderings operate on
distinct memory locations.

To prevent this program from allowing Thread 1 to access an “unsanitized” version
of d, the programmer can declare sanitized as an atomic (C11 syntax) or volatile
(Java syntax) variable, as in Figure 1.3. The atomic/volatile® annotation essentially
informs the compiler that sanitized may be accessed by multiple threads, and thus
memory accesses to sanitized should not be reordered with other memory accesses
in the program. Therefore, only the following instruction sequences are permitted:
OOEE. @D, ad @O

As illustrated by this example, with certain language-level program annotations
(e.g., atomic/volatile), the programmer can communicate to the compiler or runtime
what the ordering requirements are for a program’s memory operations. These ordering
requirements are defined by the memory consistency model of the programming
language in order to constrain and specify the values that loads of shared memory

are allowed to return in a parallel program. For example, the atomic/volatile

8Unless explicitly specified by the programmer, accesses to C11 atomic memory locations are
annotated with the memory_order_seq_cst memory order (explained in more detail in Section 2.1.2)
by default (the assumption in this example).

11

Core 0 Core 1
@ st d.sanitized + 1 @ 1d sanitized — ril
cmp rl, #1
@ st sanitized + 1 bne end

(3) 1d d.sanitized — r2
end:

Figure 1.4: Compiler translation of HLL instructions from Figure 1.3 into assembly
instructions, taking into account the HLL memory consistency model only.

Core 0 Core 1
(0) st d.sanitized + 1 (2) 1d sanitized — rl
fence cmp rl, #1
@ st sanitized <« 1 bne end
fence
(3) 1d d.sanitized — r2
end:

Figure 1.5: Extending the assembly code in Figure 1.4 to take into account an ISA
memory consistency model that allows reordering of stores with subsequent stores (to
different addresses) and loads with subsequent loads (to different addresses).

annotation in the code listing above prevents the load of d on Thread 1 from returning
uninitialized memory if the load of sanitized on Thread 1 returns true.

After establishing the program-level requirements for a piece of code (e.g., ordering
requirements), compilers need information about the features and guarantees of the
target hardware in order to translate the code into a correct and efficient assembly
program. This hardware-level information is defined by the ISA which, as discussed
in Section 1.1.2, is comprised of two primary components. The first is an instruction
interface that specifies which instructions are supported by the hardware (i.e., which
instructions are part of the hardware’s assembly language) and how they access and
update processor state. The second is the memory consistency model which specifies
the ordering guarantees of the hardware (analogous to the memory model of the
programming language which specifies the ordering requirements of the programming

language).

12

From just the instruction interface portion of the ISA, we have sufficient information
to begin translating the program in Figure 1.3 from HLL instructions into assembly
instructions, abiding by the memory consistency model requirements of the program by
preventing the compiler from reordering accesses to sanitized, as shown in Figure 1.4.
The ISA memory consistency model interface serves as a mechanism for ensuring
that the ordering requirements of the program are preserved in the face of hardware
optimizations that might reorder operations. For example, assume the memory model
of the target ISA in our running example specifies that hardware implementing said
ISA can reorder stores with subsequent stores (to different addresses) and loads with
subsequent loads (to different addresses). In this case, the compiler will insert special
assembly instructions, often called fences or barriers, to explicitly tell hardware not to
reorder operations (e.g. after or before fence or barrier instructions) in accordance
with what the program requires. Assuming this store—store and load—1load reordering
behavior is possible for the hardware in our example (as it is for several industrial ISA
memory models which are summarized later in Figure 2.1), Figure 1.4 would permit
counter-intuitive instruction sequence, aga@ Explicit ordering enforcement to
prevent this instruction sequence is illustrated in Figure 1.5 via the addition of two

fence instructions.

1.2.2 Event Ordering Issues in Hardware

Extending the running example from the previous section (Section 1.2.1), assume that
we can prove that after adding the appropriate atomic/volatile annotations to our
original program (Figure 1.2) it is written in a way that is correct (e.g., d cannot
be used if it is not “sanitized”) and secure (e.g., unauthorized memory accesses are
prevented). Further, assume that we can prove that the compiler preserved all of the
correctness and security guarantees of the original program when translating it into

assembly code (Figure 1.5). Unfortunately, these assumptions are not sufficient for

13

Instruction stream
Fetch Core0 Core 1
std€1 stsanitized€1 Id sanitized>1 Id d 20

Fetch

Dec.

Store] Storg] Dec
Exec. Buffer: Buffer| Exec. Fetch .o

Bl

— v
=
Mem. > Mem. % Decode ’
Mem. Hierarchy
w <
g Execute
£
(a) 2-core, 5-stage, in-order parch g| Memen
©
— — g Writeback
Initial conditions: d=0, sanitized=0 2
Co C1 g Store Buffer
- %
st d« 1 1d sanitized — 10 £
L. Mem. Hier.
st sanitized «+ 1 ldd — r1 v

Outcome: r0=1, r1=0 (c) phb graph corresponding to an impossi-

(b) Litmus test program corresponding to ble execution of the litmus test program in
the running example from Section 1.2 b on the parch in a.

=3

Figure 1.6: Microarchitectural happens-before graphs (uhb graphs) [LPM14], which
are described in more detail in Section 2.2.3, provide a mechanism for enumerating
and analyzing all of the possible ways in which a particular program could execute
on a hardware design. Each “way” is represented by an acyclic phb graph, differing
according to the hardware events (nodes) and/or event orderings (edges) present in
the graph. In this example, (c¢) contains a cycle and thus depicts an “unobservable”
(i.e., impossible) execution of the program in (b) on the microarchitecture in (a).

guaranteeing that the original program runs correctly and securely on hardware. This
is because when programs run on a microarchitecture, individual program instructions
do not execute atomically. Instead, individual program instructions execute as a
collection of steps or microarchitectural events. For example, an instruction might
first get fetched from instruction memory (one microarchitectural event) and at
later times execute (a second microarchitectural event) and update various processor
state elements (multiple additional microarchitectural events). Figure 1.6¢, which is
described in more detail in Section 2.2.3, illustrates this idea with each instruction
in the program in Figure 1.6b (corresponding to columns in Figure 1.6¢’s directed

graph) effectively getting “cracked” into a series of hardware-level execution events

14

(illustrated as graph nodes in Figure 1.6¢) during its execution on the microarchitecture
in Figure 1.6a.

Given the non-atomic nature of instruction execution on hardware implementations,
there are many possible ways in which program instructions can interleave and interact
with each other during a dynamic program execution. This translates to multiple
different possible ways in which a given assembly program could execute on a target
hardware implementation. As it turns out, it is possible for some of these hardware-
level event orderings and interleavings to manifest as program-level correctness and
security issues despite stemming from a seemingly proven-correct and proven-secure

HLL program and compilation process.

1.3 Research Challenges and (oals

The world is undergoing a technological revolution in which computers are ubiquitous
and performing increasingly sophisticated tasks, from locking and unlocking smart
doors to driving cars and diagnosing disease. In addition to advancements in networks,
algorithms, and even an increase in the abundance of data, improvements of computer
hardware over the past 50 years play an important role in modern compute capabil-
ities [AH18]. To sustain future computational improvements, there is a clear need
for systems designers who design efficient, high-performance hardware organizations
for executing today’s important applications. However, due to the pervasiveness of
computers and the complexity of their modern designs, we additionally need sys-
tems designers to develop techniques for specifying, orchestrating, and verifying the
correctness and security of applications running on the designs they build.

In addition to designing efficient, high-performance hardware organizations, systems
designers must define the rules that govern inter-module interactions in addition to

specifying an instruction interface for their designs. As has been demonstrated

15

under-specified, inadequately specified, or simply incorrect inter-module interactions
can lead to incorrect program behavior and/or security vulnerabilities [ARM11,
AMDI12, TML*17, MTL*16, LVK*17, GNBD16, KGG'18, LSG"18,Int18, Hor18, SP18,
KW18 BMW*18 WVBM*18 SSLG18, MR18 KKSA18, TLM18¢c,CBS*18,vSMO*19,
MML*19,SLM*19, KGG19,IMB*19]. As one example, work related to this dissertation
discovered that the 2016 RISC-V memory model was inadequately specified in light of
its goal of supporting compiled C11 programs. As a second example, a growing body
of recent work has demonstrated that under-specification of the sorts of inter-module
interactions that can take place in modern hardware systems enables adversaries to
leak sensitive information stored or accessed on such implementations. For 40 years
the notion of memory consistency models have existed to address aspects of this
problem, specifically pertaining to correctness of inter-module interactions. However,
the memory consistency models of today’s commercial hardware and languages, which
define behavior as fundamental as what values can be returned by loads of shared
memory, are complex, hard to verify, hard to implement, often do not account for
heterogeneity, and explicitly do not address security guarantee.

Given the widespread deployment of heterogeneous parallelism, devising mecha-
nisms for orchestrating, enforcing, and verifying the correct and secure interactions of
heterogeneous compute elements has become a deeply important problem. My work
pursues the vision of being able to guarantee that a particular program will always
execute in a way that is correct and secure on a given hardware implementation. My
primary insight for achieving this vision is that software-level correctness and security
problems can be mapped down to the level of problematic hardware event orderings
that occur when software executes. After identifying which hardware event orderings
can result in program correctness or security issues, this dissertation proposes formal,
early-stage tools and techniques to evaluate hardware systems designs and ultimately

see if those culprit event orderings are possible on the designs in question or not. Since

16

hardware designs are complex, and since a given user-facing instruction can induce a
variety of different hardware event sequences (e.g., due to different execution paths),
these tools and techniques are designed to effectively analyze all of the different ways
in which a program could execute on a given hardware design. Each “way,” which
is distinguished by the unique set of hardware-level execution events and/or event
orderings that result from a particular execution of a particular program, can then be
checked for correctness and security violations. Overall, the work related to this thesis
addresses the gap between programmer correctness and security expectations and
hardware reality. The remainder of this section provides an overview of the specific

challenges addressed by this dissertation.

1.3.1 Correctness Implications of Hardware Event Orderings

As demonstrated in Section 1.2.1’s running example, memory consistency models are
defined at the various layers of the hardware stack and require careful and precise
translation to interface between layers and preserve correctness. The layered nature
of memory consistency models enables modular specification and analysis. However,
due to the complexity of modern memory consistency models and a lack of precise
memory model specifications at the various layers (recall from Section 1.1.2 that not
all modern industrial memory models are specified formally), a variety of real-world
bugs involving memory models have occurred in practice [TMLT17, TML*18, MTL*16,
ABD*15,VBC*15,LVK*17,ND13, ARM11, AMD12, LVK*17].

One class of memory model verification challenges arises due to “vertical” memory
model heterogeneity. Specifically, reasoning about full-stack memory model correctness
and compatibility becomes extremely challenging with so many layers and correspond-
ing specifications and mappings involved. In other words, it becomes difficult to reason
about whether or not a given HLL program will run correctly (and as intended by the

programmer) when it is compiled and ultimately executed on some particular hard-

17

HLL
Litmus Test
T

emplates

Fix one or more models

(Permitted/
HLL Forbidden
Litmus Tests Memory Model
v
1 Compare Outcomes
9 e Obs. Unobs.
HLL=>ISA 9
NN
Compiler £ \\\\\\
Mapzings £ \§
\\
I q
1
pArch |
| ISA Memory Model |Observable/
\ Litmus Tests Unobservable

Figure 1.7: TriCheck toolflow (described in more detail in Chapter 3) for full-stack
memory consistency model verification. Bugs may require modified ISA or HLL
memory consistency models, different sets of enforced orderings from either the
compiler or the microarchitecture, or more or fewer ISA instructions with specified
ordering semantics. Numbers correspond to TriCheck steps enumerated in Section 3.2.

ware implementation. Referring back to Section 1.2.1, even if our example program
is written “correctly” with sanitized declared as volatile/atomic (Figure 1.3),
a compiler mapping bug, incompatible ISA memory model, or incorrect hardware

consistency model implementation could cause it to violate programmer guarantees.

Goal: Formal Full-Stack Memory Consistency Model Verification

To enable computer architects to evaluate the effects of desired hardware organizations
and optimizations on ISA memory models and consequently the ability of their
hardware designs to support compiled HLL programs, my co-authors and I designed
the first full-stack memory consistency model verification approach and corresponding

tool, TriCheck [TML*17, TML" 18], which is presented in Chapter 3. In contrast to
18

prior work that focused memory model analysis and verification efforts on segments
of the hardware-software stack in isolation, this thesis demonstrates tremendous
benefits to analyzing and verifying the stack holistically. In particular, the full-stack
memory consistency model verification techniques presented in this thesis identified and
characterized new memory model bugs in commercial ISAs and compilers [TML*17,
TML*18, MTL*16].

As illustrated in Figure 1.7 (and explained in detail in Chapter 3), TriCheck
evaluates a user-specified combination of an HLL, an ISA, compiler mappings from
the HLL onto the ISA, and a microarchitectural implementation of the ISA (provided
as a formal hardware design specification like those presented in Section 2.2.3) to
determine if they align on memory model requirements. In particular, TriCheck
starts with auto-generated suites of HLL test programs and evaluates their path to
execution through compiler mappings, [ISAs, and ultimately hardware implementations.
To conduct this analysis, TriCheck uses satisfiable modulo theory (SMT) based
analysis of microarchitectural happens-before (uhb) graphs (Section 2.2.3), which
represent implementation-specific program executions as directed graphs (such as
Figure 1.6¢) [LPM14], to systematically compare permitted/forbidden HLL program
executions with their corresponding (post-compilation) observable/unobservable ISA
program executions on hardware implementing the ISA.

As a case study intended to evaluate the applicability of TriCheck to modern ISA
design, we used TriCheck to evaluate the latest version (at the time of our study) of
the RISC-V ISA’s [WLPA16]° memory consistency model on its ability to support C11
programs. In doing so, TriCheck identified and characterized a series of deficiencies
in the 2016 RISC-V memory model specification rendering it incompatible with C11.
More concretely, TriCheck discovered that it was possible to build legal RISC-V

implementations that satisfied the 2016 specification [WLPA16] yet could not run all

9Throughout this manuscript, we denote the the most recent version of the RISC-V ISA specifica-
tion at the time of our evaluation with “2016,” the year of its release.

19

valid compiled C11 programs correctly regardless of how the compiler was designed.
In the process of evaluating the RISC-V memory model, TriCheck also identified two
counterexamples to a previously proven-correct compiler mapping from C11 onto the
Power and ARMv7 ISAs. This result along with concurrent work led to the discovery
of flaws in the C11 memory model itself [MTL*16, LVK"17].

Overall, full-stack memory consistency model verification with TriCheck has demon-
strated benefits over prior approaches that verify segments of the hardware-software
stack in isolation. This outcome stems from the TriCheck approach of carrying a
diverse set of HLL programs down through the hardware-software stack, ultimately to
their execution on hardware which facilitates efficient exploration of a wide range of

interesting system features rooted in HLL programs.

1.3.2 Security Implications of Hardware Event Orderings
Challenge: Lack of Rigorous Analysis Approaches for Security

Despite a rich area of research devoted to contriving hardware security exploits, there is
lack of techniques for rigorously and formally reasoning about the security guarantees
of hardware systems. Furthermore, while the security implications of event orderings
and interleavings have been noted and studied in software, they exist in hardware to
a much greater (and often less-appreciated) extent. This phenomenon is the result
of individual instructions not executing atomically, but rather getting cracked into
a sequence of microarchitectural events during the course of their execution on a
particular hardware implementation.

As has been discussed, the primary mechanism by which computer systems design-
ers can specify and reason about parallel program behaviors (i.e., memory consistency
models) explicitly does not address security. Thus, there is a need for techniques for
reasoning about program security in a hardware-aware way. Similar to the inflection

point imposed by multicore and shared memory parallelism that prompted resurgence

20

in memory model research, the degree to which skilled adversaries can exploit hardware
features to leak sensitive information [GNBD16, KGG*18,LSG"18,Int18, Horl8,SP18,
KW18, BMW*18, WVBM™18,SSLG18, MR18, KKSA18, TLM18c, CBS*18,vSMO*19,
MML*19,SLM*19, KGG19,IMB*19] motivates a rigorous solution to the problem of

hardware security.

Goal: Automated Formal Hardware Security Verification

Inspired by our work on memory consistency models, I make the important and
non-obvious observation in this thesis that the microarchitecture-level event ordering
issues that constitute memory consistency model bugs are very similar to those that
constitute security vulnerabilities and ultimately violations of confidentiality and
integrity in modern processors. From this observation, I developed an approach and an
associated automated tool, CheckMate [TLM18a], which is presented in Chapter 4, for
determining if a microarchitecture (provided as a formal hardware design specification
like those presented in Section 2.2.3) is susceptible to formally specified classes of
security exploits. If the hardware design in question is vulnerable to the class of
exploits, CheckMate automatically synthesizes proof-of-concept exploit codes.

Like TriCheck, CheckMate analyzes phb graphs; however, CheckMate extends
phb graphs and their analysis in new ways for security verification. First, CheckMate
introduces phb patterns (i.e., uhb sub-graphs) to represent particular microarchitectural
event ordering sequences that take place within the context of a program execution.
When a phb pattern is indicative of a class of security exploits, we refer to it as
an exploit pattern. Second, to facilitate hardware-aware exploit program synthesis,
CheckMate leverages relational model finding techniques to synthesize phb graphs
featuring exploit patterns and the corresponding exploit programs whose executions
they represent. Overall, CheckMate is rooted in the following idea: i) if we can

represent implementation-specific program executions as directed graphs (i.e., phb

21

graphs) [LPM14], and ii) if we can represent event ordering sequences indicative of
exploits as exploit patterns (i.e., phb sub-graphs), then any phb graph that contains an
exploit pattern as a sub-graph represents an implementation-specific exploit program
execution.

CheckMate was fully functional at the time Meltdown [LSG'18] and Spec-
tre [KGGT18] were announced; however, I had not yet used CheckMate to evaluate
a speculative processor implementation. Thus, following the public announcement
of Meltdown and Spectre, I used CheckMate to evaluate a speculative out-of-order
processor design on its susceptibility to a broad class of security exploits whose seminal
paper was published in 2014: FLUSH+RELOAD cache side-channel attacks [YF14].
Some of the automatically synthesized results were programs representative of
Meltdown and Spectre. Next, holding the microarchitecture input constant, I supplied
CheckMate with a different (and older) class of side-channel attacks whose seminal
paper was published in 2006: PRIME+PROBE [OST06]. Here, CheckMate synthesized
new attacks, called MeltdownPrime and SpectrePrime [TLM18c|. They rely on
speculation as do Meltdown and Spectre, but are distinct in that they exploit
distinct microarchitectural features: speculative cache line invalidation in the case
of Meltdown and Spectre compared to speculative cache pollution in the case of
MeltdownPrime and SpectrePrime. As I have demonstrated, the automatically

synthesized SpectrePrime program successfully leaks private data on Intel hardware!®.

1.3.3 Adding a Dimension of Heterogeneity

Challenge: Incompatibility of Interface Specifications in Heterogeneous

Parallel Systems

In general, interface specifications tend to assume homogeneity among interacting

compute elements. For example, memory consistency models specify legal inter-module

10The proof-of-concept C code can be found in Appendix A.
22

interactions through shared memory for homogeneous modules. Adding a dimension of
heterogeneity to parallel systems presents a new set of verification challenges pertaining
to incompatible interface specifications.

Furthermore, programs compiled assuming a particular interface specification as a
target are not necessarily compatible with distinctly different interface specifications.
For example, if a program is compiled to a target ISA with a particular memory model,
it cannot necessarily be executed on hardware that implements another ISA with a
different memory model. Even if the ISA instructions are correctly translated (e.g.,
via static or dynamic binary translation), event orderings prohibited by the original
memory model might be legal according to the new memory model. As a parallel for
security, a certain exploit program might be realizable on one hardware design but

not another due to differences in the underlying microarchitectures.

Goal: Heterogeneous Memory Consistency Model Translation and Inte-

gration

Given the prevalence and degree of heterogeneity in modern SoCs, this thesis proposes
techniques for ensuring and verifying that programs execute as expected on parallel
systems that feature architectural heterogeneity. I primarily focus on orchestrating
program correctness in the presence of heterogeneous memory models. However, 1
discuss how the techniques we developed can be applied to also reason about security
in the heterogeneous context.

In my early work, my co-authors and I developed the ArMOR framework which
supports specifying, algorithmically comparing, and automatically translating between
heterogeneous memory consistency models [LTPM15]. ArMOR provides a precise
[SA-independent format for specifying memory models, called memory ordering
specification tables (MOSTs), and uses it to automatically generate finite state

machines capable of intelligently translating (dynamically or statically) concurrent

23

code assuming one memory model to concurrent code that assumes another. While
ArMOR was not developed as a security analysis framework in particular, hardware
security issues rely on observability of particular program execution scenarios on
hardware implementations. Thus, the ability to reason about memory consistency
model behaviors in a heterogeneous system is crucial for reasoning about the system’s

security properties.

1.4 Dissertation Contributions

This dissertation makes an impact through the following contributions:

e Demonstration of the benefits of full-stack memory consistency model
analysis starting from auto-generated HLL test programs [TML*17,
TML*18, MTL"16]: This dissertation demonstrates the benefits of full-stack
memory model verification that spans HLL memory models, compilers, ISA
memory models, and hardware memory model implementations. In particular,
this full-stack approach starts with suites of HLL test programs and evaluates
their path to execution through compilers, ISAs, and ultimately hardware
implementations to verify the holistic preservation of HLL memory model
requirements. This technique enables efficient exploration of a wider and more
interesting set of compiler mapping variations and ISA options that have their

roots in HLL programs that hardware designs ultimately aim to support.

e Characterization of shortcomings in the 2016 RISC-V memory
consistency model specification that led to its subsequent re-
design [TML"17, TML"18]: Using TriCheck, a tool developed in this
thesis for conducting full-stack memory consistency model verification, our work
characterized a series of shortcomings in the 2016 specification of the RISC-V

memory model rendering it incapable of supporting compiled C11 programs.
24

This result led to the formation of the RISC-V Memory Consistency Model
Task Group (that I participated in) and the recent ratification to two new

formally specified RISC-V memory models, both of which are compatible with
C11 [WA19].

Identification of similarities between memory consistency model anal-
ysis and security analysis [TLM18a, TLM19]: This thesis is the first to
make the important and non-obvious observation that memory consistency model
analysis and security analysis are amenable to similar techniques. This obser-
vation facilitated a relatively seamless transition from the memory consistency
model verification techniques used in this thesis to novel techniques for conduct-
ing hardware security verification. Furthermore, our successful adaptation of
memory model analysis techniques to the hardware security space paves the
way for future solutions to security throughout the hardware-software stack,

mirroring the history of memory model advances (Figure 1.1).

Presentation of a rigorous, formal alternative to existing ad hoc se-
curity analysis approaches that resulted in the synthesis of new and
existing exploits [TLM18a, TLM19, TLM18c|: This thesis presents an
approach and automated tool, CheckMate, for systematically evaluating sus-
ceptibility of a hardware design to known exploit classes. Using CheckMate to
evaluate susceptibility of a speculative out-of-order processor design to cache
side-channel attacks resulted in automatically systematized programs represen-
tative of Meltdown [LSGT18] and Spectre [KGGT18] in addition to new related,

yet distinct exploits, MeltdownPrime and SpectrePrime [TLM18c].

Presentation of techniques for directly comparing and translating
between heterogeneous memory consistency model implementa-

tions [LTPM15]: This thesis proposes techniques for reconciling the

25

differences between the interface specifications of diverse compute elements
in heterogeneous systems, focusing on consistency model specifications. In
particular, we propose the ArMOR framework for directly comparing and

dynamically translating between heterogeneous memory consistency models.

1.5 Dissertation Outline

The rest of this thesis is organized as follows. Chapter 2 presents background infor-
mation on memory consistency models and microarchitectural side-channel attacks,
including an overview of existing formal analysis techniques that are most relevant
for this thesis and a summary of the features that unite memory model and security
analysis. Chapter 3 introduces the first approach and associated automated tool
for full-stack memory consistency model verification, TriCheck. After explaining the
TriCheck approach, the second half of Chapter 3 presents an evaluation of the 2016
RISC-V memory model specification using TriCheck. Chapter 4 adapts techniques
that have proven useful in memory model analysis for security analysis and presents
CheckMate, an approach an automated tool for evaluating a hardware system’s suscep-
tibility to known exploit classes and synthesizing proof-of-concept exploit code when
the design is found to be vulnerable. After detailing the CheckMate approach, the
second half of Chapter 4 presents a case study where CheckMate is used to evaluate
susceptibility of a speculative out-of-order processor design to cache side-channel
attacks. While Chapters 3 and 4 are open to heterogeneity, their focus is largely
on systems featuring homogeneous parallelism at the architecture level. Chapter 5
introduces techniques to handle heterogeneous parallelism, focusing on architectural
memory consistency model heterogeneity with applicability to heterogeneous security

challenges. Specifically, Chapter 5 presents the ArMOR framework for systematically

26

comparing and translating between heterogeneous memory models. Finally, Chapter 6

presents ongoing and future research directions and subsequently concludes this thesis.

27

Chapter 2

Background and Related Work

This chapter presents a background on memory consistency models and security that
serves as the foundation for the remainder of this dissertation. Section 2.1 provides
a an overview of memory consistency models in general, including features that are
used later in this dissertation to describe and distinguish memory models. Those
well-versed in memory models may wish to skip Section 2.1. Section 2.2 describes
approaches from the literature, which this thesis leverages and builds on, that have
been used for defining and analyzing memory consistency model specifications and
their implementations. Section 2.3 provides a summary of the features that unite
memory consistency model and security analysis. Section 2.4 then gives an overview of
hardware security exploits, focusing on how modern processor designs can be exploited
to leak sensitive information from the programs they run. Those well versed on cache
side-channel attacks and speculative (i.e., transient) execution attacks may wish to

skip Section 2.4. Section 2.5 summarizes this chapter.

2.1 Overview of Memory Consistency Models

When a single processor core or compute element is executing a sequential program,

it is free to dynamically reorder instructions to improve performance when such

28

reordering will not affect program correctness. For example, having the flexibility to
legally reorder instructions can enable a processor to make forward progress when
it would otherwise have to stall computation (if reordering was disallowed) while
waiting for busy functional units or long-latency memory accesses. However, as soon
as another compute element can simultaneously access the same shared resources, in
particular shared memory, these reorderings may cause executing instructions to be
partially and/or incorrectly witnessed or observed. This potentially leads to software
bugs, system crashes, or security vulnerabilities. As discussed in Chapter 1, memory
consistency models are defined at the various layers of the hardware-software stack
from HLLs down through ISAs, intermediate representations (IRs), and hardware
implementations to address aspects of this complex and fundamental problem.

At each layer of the compute stack consistency models specify legal ordering
and visibility of load and store instructions executing concurrently on a collection of
homogeneous compute elements. Their goal is to enable programmers to partition
the space of all potential program outcomes (where “outcome” refers to the values
returned by the loads of a program) into a set that are legal and a set that are illegal.

Adve and Gharachorloo define a memory consistency model as follows [AG95]:

[A] memory consistency model [...] provides a formal specification of
how the memory system will appear to the programmer, eliminating the
gap between the behavior expected by the programmer and the actual
behavior supported by a system. Effectively, the consistency model places
restrictions on the values that can be returned by a read in a shared-memory

program execution.

Defining behavior as fundamental as what value should be returned when software
loads from memory, memory models are central to hardware and software systems
design and yet difficult to get right. Moreover, memory system heterogeneity, particu-

larly memory model heterogeneity, presents a number of challenges: how to compile
29

from a given software memory model onto a given hardware memory model, how to
design memory model aware ISAs and intermediate representations (IRs), how to
translate code from one ISA to another, how to ensure interoperability of heteroge-
neous components, and so on. This dissertation address these memory consistency

model challenges in Chapters 3 and 5.

2.1.1 Sequential Consistency

Frequently regarded as the most intuitive memory model, SC [Lam79] requires a strict
interleaving semantics for memory events issued by parallel processors/threads in a
parallel ISA/HLL program. According to its definition, SC requires that the result of

a parallel program execution is the same as if the following two conditions hold:

1. All cores execute their own instructions in program order po, where po describes
the order in which instructions appear in the original unrolled program (e.g., if
instruction A comes before instruction B in the original binary, instruction A is

before B in po).

2. A total global order exists on all instructions from all cores such that each load
returns the value written by the most recent store to the same address in that

total order.

Unfortunately, common compiler, runtime, and microarchitectural optimizations
violate SC, resulting in low performance for naive SC implementations. In hardware,
there have been many attempts at mitigating SC’s performance cost, commonly
leveraging techniques such as aggressive post-retirement speculation and rolling back
execution in the case of a coherence violation [BMW09,CTMT07,GF02,GFV99,RPA97,
WAFMO07]. Additionally, techniques have been proposed that aim to enforce SC only

for conflicting accesses [GL14, LNGR12,SNM*12]. Nevertheless, most manufacturers

30

have elected to build hardware with weak memory models that relax SC [AMD17,

Int10,Int19,IBM13, ARMO8,NVI17, ARM13b, WA19].

2.1.2 Weak Memory Models

Weak memory models result from relaxing either of the two requirements for SC
enumerated above. We refer to the first SC as the program order requirement and
the second as the store atomicity requirement [AM06, AG95|. By relaxing po, weak
memory models elect to permit observable (i.e., from the viewpoint of other proces-
sors/threads) reordering of instructions in po. Relaxing store atomicity amounts to
removing restrictions on the order in which writes to memory become visible to remote
processors/threads (where visible means that a read on that remote core could return
return the value of the write in question.)

Various issues can arise when the effects of relaxing SC memory orderings are
not carefully considered at ISA design time or when mapping a HLL program or
existing binary (compiled for a different ISA) onto some target ISA. This section
provides explanations and examples of common memory model features, some which
are typically enforced and others which are sometimes relaxed. The focus of this
section is on memory model features that are particularly relevant to understanding
the contributions presented in Chapters 3 and 5. Table 2.1 gives an overview of how

some modern ISA memory models compare across the features we discuss.

Relaxing Program Order

Different memory consistency models may elect to relaz (i.e., not require) ordering
between pairs of instructions in po. For example, as stated in Table 2.1, x86-TSO,
which is the memory model used by Intel processors, relaxes the ordering between
writes and subsequent (in po) reads in order to permit store buffer bypassing in

hardware implementations of x86-TSO. When reordering between two instructions in

31

‘suostredurod ppout oswold I0J JUSIDIPNS oIR SOIN)RAJ [oPOW AIOWOW FUIZLIRWITINS
So[qe) [[® 20U ‘G I2ydRy) UL SSNOSIP oM Sy “S[OPOUWL PIOUSISJAL 9} JO MOIAISAO [9AS[-SIY ® sopraoid Apduwrs o[qe) Sy} et} 930N
"SULIDPIO SATIR[NWIND 90I0Jus Are[ruuts pue sired ormbor-oses[or WLIO] URD JRY) SUOIIONIISUL S9J0ULD SUYSI[YSIY o[y S[Epow
Arowewr YHNU 10J SUOTIONIISUL 90USJ SAIJR[NIUND S9J0ULpP SUNYSIYSIY MO[[o *(910)s 10 peo] I9je[-od © [IIM PRO[B 9JR[DI A[UO
Ad1]) ‘U013998 ST} Ul souapuadop Jo uordLIosep o1) woly) ynejep Aq padlojus st oplo Aduspuadop sniy pue odd jo yred yjoq ore
SIOPIO M\ 4—Y PUR Y<— 1eY) sojedrpul [[00 Aouopueda(® Ul /U, Wy "g'1'g UOI09G Ul pojuaseld soImjesy [opotl ATOTSW Jeam
o} 03 1oadser Ym aredwiod (SNDIN) S[EPOW ADUSISISUOD ATOWLW Y G] UISPOW JO AJOLIRA B MOY SOZLIRUIWNS 9[(e} ST, :T'g O[qRL,

ey | (2d00s) oxbos souo; [EGBEIEEATEHES
. fodoos) - ToT-bo - 5oUo ‘[BAeSSFSETabSEFPT | {odoos} - Tex boe-eousy|{edoos} os eousg (61587]
{ }T ¥ ‘{edoos} os-eousg ‘{edoos} os-eousg XLd
‘{fedoos}-os-edusg
JULSTTILO SUKSTTI90 . [eTNdT]
s/ / / ‘oufsmt ‘oufsmy ‘oufsmT ‘oubsmy duksa ‘ouksuy ouksny Tomoq
k n [eeTINCEY]
qSTTI20 ‘qup qSTTI3o ‘qup quip qup
717 4 - LAINYV
M MI 90USJ ‘MI‘I 9OUSJ| I°I ©0USJ ‘MI‘I ©OUSF [M‘M S90UST ‘M MI ©OUST 0S3°o0uUdaJ ET«EL
s / / ‘MI‘MI 9D0UST ‘MI‘MI 9D0UST ‘MI‘MI 9OUST ‘MI‘MI 9D0UST ONMAY
tas ‘epT ¢ o ¢ n [aeTng vl
STTID ‘Tas ‘e STTI1D ‘B 1s
LA / Va qsTT T PT qup qsTT PT qup T qup qup QAINH Y
’ [6TVM]
e/ule/u|e/u MI‘MI 90USF
[uje/u|e/ / / Vs , OSLAY
[60SS0]
e/ule/u|e/u eouUL U
[uje/u|e/ / Vs , , : 081 -08%
[132[e1ep | IPPE| VO INU VOINI VOIN MY <y MM H<—M INOIN
sopuspuada(| AjPIwIo)y 91038 Odd VSI

32

po is explicitly disallowed (e.g., the ordering between two write operations in po for
x86-TSO), they are said to be part of preserved program order (ppo). This section
presents some relationships that might exist between a pair of instructions in po,
resulting in their inclusion in ppo when they might otherwise be free to reorder.

Coherence and Same-Address Ordering: Coherence' ensures that (1) all
stores are eventually made visible to all cores and (2) there exists a single total
order that all threads agree on for all stores to the same address [Gha95, GLLT90].
Coherence can by thought of as a subset of consistency; while consistency deals with
orderings of memory accesses to any addresses (even different addresses), coherence is
only concerned with orderings between same address access. Accesses from the same
thread to the same address generally must maintain program order regardless of other
po relaxations (i.e., they must appear to execute in program order), but there are
exceptions: some old Power models and SPARC RMO relax same-address load—load
ordering [SPA94, TDF*01].

Notably, imprecision in the coherence specification led to the ARM load— load
hazard, a case in which same-address, program-order read operations in programs
(e.g., C11 program) were incorrectly reordered when the programs were compiled
and run on ARM hardware. ARM’s processor specification was ambiguous regarding
the ordering requirements of same-address, program-order loads both implicitly in
hardware and explicitly via compiler-inserted fence or barrier instructions. As a result,
some commercial ARM hardware designs reordered same-address, program-order loads
in hardware while compilers assumed the opposite. Section 3.1) further discusses
the ARM load—load hazard, and uses it to motivated full-stack memory consistency
model verification techniques that can avoid memory model incompatibilities in the

hardware-software stack.

LCoherence protocols, which provide hardware system support for enforcing coherence, often
use stronger definitions of coherence (e.g., single writer/multiple readers [SHW11]), while other
consistency model literature may use weaker notions such as total orders only on stores to the same
address.

33

Initial conditions: x=0, y=0
TO T1 T2
a: st(x, 1, rlx) b: r0 = 1d(x, rlx) d: r1 = 1d(y, acq)
c: st(y, 1, rel) e: 12 = ld(x, rlx)
Forbidden C11 Outcome: r0=1, r1=1, r2=0

Figure 2.1: C11 variant of the Write-to-Read Causality (WRC) litmus test. TO0, T1,
and T2 are three threads. The st and 1d of y perform release-acquire synchronization.

Initial conditions: x=0, y=0
TO T1 T2 T3
a: st(x, 1,sc) brst(y, 1,sc) ¢ r0=1d(x, sc) e: r2 = 1d(y, sc)
d: r1 = ld(y, sc) f: r3 = 1d(x, sc)
Forbidden C11 Outcome: r0=1, r1=0, r2=1, r3=0

Figure 2.2: C11 variant of the Independent Reads of Independent Writes (IRIW)
litmus test. All accesses are SC atomics.

Dependencies: A dependency relates a load with a subsequent (i.e., later in
program order) load or store. An address (addr) (dependency results when the
address accessed by a load or store depends syntactically? on the value returned
by a po-prior load. A data dependency exists between a load and a po-later store
when the store’s value depends syntactically on the loaded value. A control (ctrl)
dependency occurs when the control flow decision of whether to execute a load or store
depends syntactically on the value returned by a po-prior load. Intuitively, it may
seem impossible not to enforce dependencies, as a dependee seemingly cannot execute
until it has all of its inputs available. However, in the presence of microarchitectural
speculation, the dependee can in fact behave as if it were reordered with the instruction
it depends on [MSC™01], unless such behavior is explicitly prevented by the ISA

specification.

34

Relaxing Store Atomicity

In addition to relaxing orderings between instructions in po, different memory models
may relax store atomicity in a variety of different ways. The three store atomicity
variants we consider and describe below, in increasing weakness, are MCA (requirement
for SC), rMCA, and nMCA. Table 2.1 that x86-TSO relaxes store atomicity and
features rMCA stores. This relaxation is allowed in order to permit store buffer
forwarding in hardware implementations of x86-TSO.

Flavors of Store Atomicity: As defined by Collier, a store is multiple-copy
atomic (MCA) if all cores in the system, including the performing core, conceptually
see the updated value at the same instant [Col92]. As a performance optimization,
some architectures allow a core to read its own writes prior to their being made visible
to other cores (e.g. vi store—load forwarding via a core’s private store buffer); we
refer to this as read-own-write-early multiple-copy atomic (tMCA) [AG95]. However,
rMCA writes must be made visible at the same time to all cores other than the
performing core. Weaker models, like ARMv7 and Power, feature non-multiple-copy
atomic (nMCA) stores that may become visible to some remote cores before they
become visible to others.

Figure 2.1 demonstrates the often counter-intuitive effects of nMCA stores®. The
specified non-SC outcome corresponds to a causality chain where TO sets a flag by
writing 1 to x, and T1 reads the updated value of x, subsequently setting its own flag
by writing 1 to y. T2 then sees the update of y, reading 1; however, it has still not

observed the update of x and reads its value as 0. If the memory operations in this

2ARM, Power, and RISC-V respect syntactic dependencies, which define dependencies according
to the syntax of the instructions. This is broader than semantic dependencies, which only include
true dependencies, i.e., those which could not in theory be optimized away.

3We use a shorthand representation for all C11 litmus test programs in this dissertation. In a real
C11 executable, store and load would be prepended with atomic_ and appended with _explicit.
Additionally, instances of rlx, rel, acq, and sc would be prepended with memory_order_ and
extended to relaxed, acquire, release, and seq_cst, respectively.

35

C/C++ Instruction Power
1d rix 14
1d acq 1d; ctrlisync
1d sc hwsync; 1d; ctrlisync
st rlx st
st rel lwsync; st
st sc hwsync; st

Table 2.2: When compiling a particular HLL onto a target ISA, non-synchronizing
accesses may be freely optimized. However, each synchronizing access must be mapped
onto a set of assembly instructions that uphold its ordering requirements. This set
of assembly instructions is determined by a “recipe” specific to HLL-ISA pair. This
table summarizes the leading-sync compiler mapping from C11 onto Power [MS11].

C11 program are compiled down to regular loads and stores on a nMCA system, the
forbidden outcome will (perhaps surprisingly) be observable.

C11 supports cross-thread synchronization via acquire and release operations.
These operations were initially proposed as part of release consistency (RC) [GLLT90].
An acquire ensures that it is made visible before accesses after the acquire in program
order. Likewise, a release ensures that accesses before